143 research outputs found

    The Gammaherpesvirus m2 Protein Manipulates the Fyn/Vav Pathway through a Multidocking Mechanism of Assembly

    Get PDF
    To establish latent infections in B-cells, gammaherpesviruses express proteins in the infected B-cells of the host that spuriously activate signalling pathways located downstream of the B-cell receptor. One such protein is M2, a murine gammaherpesvirus 68-encoded molecule that activates the Vav1/Rac1 pathway via the formation of trimolecular complexes with Scr family members. Previous reports have shown that the formation of this heteromolecular complex involves interactions between a proline rich region of M2 and the Vav1 and Fyn SH3 domains. Here, we show that the optimal association of these proteins requires a second structural motif encompassing two tyrosine residues (Tyr120 and 129). These residues are inducibly phosphorylated by Fyn in non-hematopoietic cells and constitutively phosphorylated in B-cells. We also demonstrate that the phosphorylation of Tyr120 creates specific docking sites for the SH2 domains of both Vav1 and Fyn, a condition sine qua non for the optimal association of these two signalling proteins in vivo. Interestingly, signaling experiments indicate that the expression of M2 in B-cells promotes the tyrosine phosphorylation of Vav1 and additional signaling proteins, a biological process that requires the integrity of both the M2 phosphotyrosine and proline rich region motifs. By infecting mice with viruses mutated in the m2 locus, we show that the integrity of each of these two M2 docking motifs is essential for the early steps of murine gammaherpesvirus-68 latency. Taken together, these results indicate that the M2 phosphotyrosine motif and the previously described M2 proline rich region work in a concerted manner to manipulate the signaling machinery of the host B-cell

    Human Vav1 Expression in Hematopoietic and Cancer Cell Lines Is Regulated by c-Myb and by CpG Methylation

    Get PDF
    Vav1 is a signal transducer protein that functions as a guanine nucleotide exchange factor for the Rho/Rac GTPases in the hematopoietic system where it is exclusively expressed. Recently, Vav1 was shown to be involved in several human malignancies including neuroblastoma, lung cancer, and pancreatic ductal adenocarcinoma (PDA). Although some factors that affect vav1 expression are known, neither the physiological nor pathological regulation of vav1 expression is completely understood. We demonstrate herein that mutations in putative transcription factor binding sites at the vav1 promoter affect its transcription in cells of different histological origin. Among these sites is a consensus site for c-Myb, a hematopoietic-specific transcription factor that is also found in Vav1-expressing lung cancer cell lines. Depletion of c-Myb using siRNA led to a dramatic reduction in vav1 expression in these cells. Consistent with this, co-transfection of c-Myb activated transcription of a vav1 promoter-luciferase reporter gene construct in lung cancer cells devoid of Vav1 expression. Together, these results indicate that c-Myb is involved in vav1 expression in lung cancer cells. We also explored the methylation status of the vav1 promoter. Bisulfite sequencing revealed that the vav1 promoter was completely unmethylated in human lymphocytes, but methylated to various degrees in tissues that do not normally express vav1. The vav1 promoter does not contain CpG islands in proximity to the transcription start site; however, we demonstrated that methylation of a CpG dinucleotide at a consensus Sp1 binding site in the vav1 promoter interferes with protein binding in vitro. Our data identify two regulatory mechanisms for vav1 expression: binding of c-Myb and CpG methylation of 5′ regulatory sequences. Mutation of other putative transcription factor binding sites suggests that additional factors regulate vav1 expression as well

    Vav proteins are key regulators of Card9 signaling for innate antifungal immunity

    Get PDF
    Fungal infections are major causes of morbidity and mortality, especially in immunocompromised individuals. The innate immune system senses fungal pathogens through Syk-coupled C-type lectin receptors (CLRs), which signal through the conserved immune adaptor Card9. Although Card9 is essential for antifungal defense, the mechanisms that couple CLR-proximal events to Card9 control are not well defined. Here, we identify Vav proteins as key activators of the Card9 pathway. Vav1, Vav2, and Vav3 cooperate downstream of Dectin-1, Dectin-2, and Mincle to engage Card9 for NF-κB control and proinflammatory gene transcription. Although Vav family members show functional redundancy, Vav1/2/3(-/-) mice phenocopy Card9(-/-) animals with extreme susceptibility to fungi. In this context, Vav3 is the single most important Vav in mice, and a polymorphism in human VAV3 is associated with susceptibility to candidemia in patients. Our results reveal a molecular mechanism for CLR-mediated Card9 regulation that controls innate immunity to fungal infections

    Compromized geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency

    Get PDF
    Mevalonate kinase deficiency (MKD) is an autoinflammatory disorder caused by mutations in the MVK gene resulting in decreased activity of the enzyme mevalonate kinase (MK). Although MK is required for biosynthesis of all isoprenoids, in MKD, in particular, the timely synthesis of geranylgeranyl pyrophosphate appears to be compromised. Because small guanosine triphosphatases (GTPases) depend on geranylgeranylation for their proper signaling function, we studied the effect of MK deficiency on geranylgeranylation and activation of the two small GTPases, RhoA and Rac1. We demonstrate that both geranylgeranylation and activation of the two GTPases are more easily disturbed in MKD cells than in control cells when the flux though the isoprenoid biosynthesis pathway is suppressed by low concentrations of simvastatin. The limited capacity of geranylgeranylation in MKD cells readily leads to markedly increased levels of nonisoprenylated and activated GTPases, which will affect proper signaling by these GTPases

    Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis.</p> <p>Methods</p> <p>Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis.</p> <p>Results</p> <p>We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation.</p> <p>Conclusion</p> <p>Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression.</p

    Signaling Mechanisms of Vav3, a Guanine Nucleotide Exchange Factor and Androgen Receptor Coactivator, in Physiology and Prostate Cancer Progression

    Get PDF
    The Rho GTPase guanine nucleotide exchange factor (GEF) Vav3 is the third member of the Vavfamily of GEFS and is activated by tyrosine phosphorylation. Through stimulation of Rho GTPaseactivity, Vav3 promotes cell migration, invasion, and other cellular processes. Work from our laboratory first established that Vav3 is upregulated in models of castration-resistant prostate cancer progression and enhances androgen receptor as well as androgen receptor splice variant activity. Recent analysis of clinical specimens supports Vav3 as a potential biomarker of aggressive prostate cancer. Consistent with a role in promoting castration-­resistant disease, Vav3 is a versatile enhancer of androgen receptor by both ligand-dependent and ligand-independent mechanisms and as such impacts established pathways of androgen receptor reactivation in advanced prostate cancer. Distinct Vav3 domains and mechanisms participate in ligand-dependent and -independent androgen receptor coactivation. To provide a physiologic context, we review Vav3 actions elucidated by gene knockout studies. This chapter describes the pervasive role of Vav3 in progression of prostate cancer to castration resistance. We discuss the mechanisms by which prostate cancer cells exploit Vav3 signaling to promote androgen receptor activity under different hormonal milieus, which are relevant to clinical prostate cancer. Lastly, we review the data on the emerging role for Vav3 in other cancers ranging from leukemias to gliomas.https://nsuworks.nova.edu/hpd_medsci_faculty_books/1002/thumbnail.jp

    Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal expression of Rho-GTPases has been reported in several human cancers. However, the expression of these proteins in cervical cancer has been poorly investigated. In this study we analyzed the expression of the GTPases Rac1, RhoA, Cdc42, and the Rho-GEFs, Tiam1 and beta-Pix, in cervical pre-malignant lesions and cervical cancer cell lines.</p> <p>Methods</p> <p>Protein expression was analyzed by immunochemistry on 102 cervical paraffin-embedded biopsies: 20 without Squamous Intraepithelial Lesions (SIL), 51 Low- grade SIL, and 31 High-grade SIL; and in cervical cancer cell lines C33A and SiHa, and non-tumorigenic HaCat cells. Nuclear localization of Rac1 in HaCat, C33A and SiHa cells was assessed by cellular fractionation and Western blotting, in the presence or not of a chemical Rac1 inhibitor (NSC23766).</p> <p>Results</p> <p>Immunoreacivity for Rac1, RhoA, Tiam1 and beta-Pix was stronger in L-SIL and H-SIL, compared to samples without SIL, and it was significantly associated with the histological diagnosis. Nuclear expression of Rac1 was observed in 52.9% L-SIL and 48.4% H-SIL, but not in samples without SIL. Rac1 was found in the nucleus of C33A and SiHa cells but not in HaCat cells. Chemical inhibition of Rac1 resulted in reduced cell proliferation in HaCat, C33A and SiHa cells.</p> <p>Conclusion</p> <p>Rac1 is expressed in the nucleus of epithelial cells in SILs and cervical cancer cell lines, and chemical inhibition of Rac1 reduces cellular proliferation. Further studies are needed to better understand the role of Rho-GTPases in cervical cancer progression.</p

    Characterization of New Substrates Targeted By Yersinia Tyrosine Phosphatase YopH

    Get PDF
    YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates

    Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis

    Get PDF
    Son of Sevenless 1 (SOS1) is a dual guanine nucleotide exchange factor (GEF) that activates the small GTPases RAC and RAS. Although the molecular mechanisms of RAS GEF catalysis have been unveiled, how SOS1 acquires RAC GEF activity and what is the physio-pathological relevance of this activity is much less understood. Here we show that SOS1 is tyrosine phosphorylated on Y1196 by ABL. Phosphorylation of Y1196 controls SOS1 inter-molecular interaction, is required to promote the exchange of nucleotides on RAC in vitro and for platelet-derived growth factor (PDGF) activation of RAC- and RAC-dependent actin remodeling and cell migration. SOS1 is also phosphorylated on Y1196 by BCR-ABL in chronic myelogenous leukemic cells. Importantly, in these cells, SOS1 is required for BCR-ABL-mediated activation of RAC, cell proliferation and transformation in vitro and in a xenograft mouse model. Finally, genetic removal of Sos1 in the bone marrow-derived cells (BMDCs) from Sos1fl/flmice and infected with BCR-ABL causes a significant delay in the onset of leukemogenesis once BMDCs are injected into recipient, lethally irradiated mice. Thus, SOS1 is required for full transformation and critically contribute to the leukemogenic potential of BCR-ABL

    Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration

    Get PDF
    The mammalian protein kinase N (PKN) family of Serine/Threonine kinases comprises three isoforms, which are targets for Rho family GTPases. Small GTPases are major regulators of the cellular cytoskeleton, generating interest in the role(s) of specific PKN isoforms in processes such as cell migration and invasion. It has been reported that PKN3 is required for prostate tumour cell invasion but not PKN1 or 2. Here we employ a cell model, the 5637 bladder tumour cell line where PKN2 is relatively highly expressed, to assess the potential redundancy of these isoforms in migratory responses. It is established that PKN2 has a critical role in the migration and invasion of these cells. Furthermore, using a PKN wild-type and chimera rescue strategy, it is shown that PKN isoforms are not simply redundant in supporting migration, but appear to be linked through isoform specific regulatory domain properties to selective upstream signals. It is concluded that intervention in PKNs may need to be directed at multiple isoforms to be effective in different cell types
    • …
    corecore